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The method of integral equations has been successfully applied
to the boundary problems requiring the determination of poten-
tials, W(p) and V(p) satisfying the boundary relations! —

(1) ‘ [\\'(z* —\\'(/ Y — AL W (t+)+\\*(/ )]=£(2)

1 [d_(r (t+)] )\[d )+t l('—)]:f(t)
respectively, whether the potentials ave ordinary? corresponding to
Laplace’s equation, or ‘“ generalised ™ corresponding to the equa-
tion—

(@) v U—-kU=0
The latter potential 1 have cousidered in a papers recently com-
municated to the Quarterly Journal. It is shewn that solutions to
the problems can be uniquely determined, except for certain singu-
lar values of the parameter, in the form of potentials of double and
simple strata respectively, given by4—

(3) | W(p)=/s1(e)H(tp)dt

UV (p)y =/ Gpt)(8)dt.

At a singular parameter value A, however, the solutions become
infinite, since each of the functions H(?p) and G(p?) has a simple
pole. unless certain conditions are satistied. It will he shewn that
the parts Z(tp) and G(pt) of these functions remaining finite at the
pole X, form the corresponding functions for the solutious at this
pole of the problems (1), which, however, must be modified” in their
second members.  The residues P(7p) and Q(pt) of H(tp) and G(pt)
respectively, also play an huportant part in the following argu-
ment.

1 Poincaré, ““Sur les équations de la Physique.”  Rendiconti, Palermo, 1504,

2 Plemelj. Monatsfefte fiir Math, und Physik, Bd. 15, S, 337-411 (1904); Bd. 18, 8. 180-211
(1907).

3 **PRoundary problems for the gencralised potential corresponding to  the y
V20 kU =0 Quarterly Journal, vol. 46, pp. 6

4 The integration thronghont is extended over the houndary of the region considered, unless
otherwise stated. The notation of my previous paper is adhered to.

5 Weatherburn, loc. cit. § 65 also Plemelj, loe. cit., S. 404-5,
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Plemelj’s work! is confined to the ordinary potential and deals
chiefly with the pole A= +1. The present paper extends the in-
vestigation to the generalised potential, and also to the general
pole .  For this characteristic number, whicli may be any what-
ever, more general relations arve established  connecting the resi-
dues and the functions Z(tp) and G(pg), which correspond to the
noditied problems.  The boundary discontinuities of these fune-
tions and their derivatives are investigated, and also certain
theorems of reciprocity. Expansions for the various functions are
found as power series in the parameter A

In the first part of the paper tle investication applies to the
ordinary and generalised potentials alike.  In the second part
the ordinary potential ix considered separately, and results pecu-
liar to Laplace’s equation are obtained which depend either upon
the fact that A=<41 are lLere characteristic numbers, or upon the
special value of the integral of Z(7p) extended over the boundary.
Values for the boundary iutegrals of the different functions are
investigated. TFurther from the convergence of the above expan-
sions when [A|=1 a value is deduced for the conductor potential.
1t will also be showu that the solutions of tha second boundary
problem for the inner aud outer regions are expressible in terms
of a single function.

Finally the caxe of the generalised potential is considered
separately. The value is found of the integral of /(tp) extended
over the boundary, in terms of the potential of a space distribu-
tion of matter. Further relations are found connecting the boun-
dary integrals of the other furctions involved.

L.—Ovdinary and yeneralised potentials.

§1. Solutions and their poles. The solutions of the boundary
problems as given by (3), when expressed in terms of the resolvent
H(¢s) become®—

(3" § W(p)=/1)[rltp) + A/ H(t0)h(0p)db)ds

UV () =/Tgpt) + M o(pO) (8818 (1)dr
where

{
bp) = (;”y((ip)

6 being a point on the boundary. and g (py) is a particular solu-

tion of Laplace’s equation if the potential is ordinary, and of the

equation (2) if it is generalised. The value of this function is

given by—
1 Cf. also *“ Potentialtheoretische Untersuchungen,” Teubner, Leipzig (1911).
2 (i. Weatherburn., Loe, cit. § 2.
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) 9(py) = ,11(,3«1 for the logarithmic potential
=

T
!

y(pg) = ‘),,-'}1~ for the Newtonian potential

which are solutions of Laplace’s equation; and

(+) * g(py) = l/’(ko’) for the plane
m

' 9(rg) = )1 -e—kr)y for space
T

when the potential is generalised corvesponding to the equation
(2). In this »r is the radius vector joining the points p and g,
and f(z) has the same meaning as in my paper already referred
to. The functions H(fp) and G(pt) are cqual to the correspond-
ing expressions of (3") in square brackets. The former is an ex-
tension of the solving function in which any point p replaces the
bhoundary point s. The latter may be defined more generally for
any two points pg by—
G(pq) = g(pa) + My(po) 1 (g )b
This function is the Greeun's function® for the boundary problems
(1). It will be seen that H(#p) can be expressed in terms of it by
normal differentiation, so that both solutions (3) can be given
in terms of it by a representation of Green's type. It is easily
verified that
JylgtyH(tp)dt = jG (gtYh(tp)dt

s0 that the equations defining and connecting these functions are—

(9) | H(tp) — hltp) = N/ h(t0) H(Op)dt ~ N/ H(t0)h(Op)dt!

L Ggp) — glqp) = M g(gty H(Op)dt = X )G (q0)h(p)d O

Now when X ix equal to a characteristic number (singular value)
Ay each of the functions H(¢#p) and G(gp) has a simple pole*  The
solutions expressed by (3) are therefore infinite, and cease to have
a meaning. Nince the pole is simple we may write— '

O )= 2up + 1\(‘_1.')2

| Glap)=titap) + \‘—‘;f(ﬁq’?

where H(tp) and (fgp) are functions of X, which depend on A,
and remain tinite when A==X;; the residues P(7p) and A, Q(gp)

do not involve A but depend on X 1f now we substitute from
(6) in (5), multiply by (A;—A) aud proceed to the limit A=A,
we obtain the following relations :—
(7) [ P(tp) = N PUOI(OP)AO =N,/ 1(t6)P(6p)dt
| Qlgpy=/y(q)P(Op)di =N\, /Qy)li(Op)dt

1 Of. Weatherburn. reen's Functions for the equation A2v J2u=0, cte.” Quarterly
.Journal, vol. 46. The remaining references are to my earlier paper.
2 Weatherburn. Loc. cit. § 3.
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If again we substitute from (6) in (5) and use the relations (7)
we ﬁnd—

J MSR(OVH(Op)d0 =N/ L (:0)h(0p)dO=H (t p)—h(tp) + —. P(tp)
( N/ g(q0) H (0p)d 6= )/ G(q0) h(0p)d 6= G(qp) — J(’IP) + Qlap)

These relations are more general than those found for the ordinary
potential by Plemelj, who considers mainly the pole A= +1. They
play an important part in our arguinent.

The value of P(#s) is known, being the residue of the resolvent
for the simple pole A, If u be the arder of multiplicity of the
root A, of the determinant D(X), P(¢s) may be expressed as the

sum
(9) P(ts) = b (O)a(s) + bu(Oul(s) + - - - + ulO)m(s)
where the functions ¢y, yi(i=1. 2, . . . . m) are the m linearly

independent solutions of the homogeneous integral equations.
B(t) =Xo./ h(18)$(6)d0
{ Y(t) = o/ W O)R(00)d0
satisfying the usual orthogonal relations. Hence the values of P(#)
and Q(gp) are given by

(%) [ P(p) =¢(Ou(p) + . - - .. + bu(t)¥m (p)
LQgp) = ilgpa(p) + - - - - - +®ulg)Ym(p)
where ®(¢) is the potential of a simple stratum of density ¢(¢) over the
boundary, and y(p) is that of a double stratum of moment A (#).
If we introduce the functions

0 | kep) = hiep) - »P(t;n)

Litgp) = gtap) - Q(rzp)
we are enabled to express (8) in a form exactly similar to (5). For
if in the first of (8) we replace p by 6, multiply throughout by
P(6p) and integrate over the boundary, we find in virtue of ()
that
SH)P(O0p)do =/ P(t0)H(0p)dd =0.
Similarly it may be proved that
J G(q0)P(0p)db =/ Q(q0) H(8p)dd = 0.
These integrals may therefore he combined with the integrals in (3)
without altering their values, so that the relations may bhe
written
(11) { N/ k(0) H(Op)dt =N/ H(t0)k(0p)dd = H(tp) — k(tp)
N/ Uq0) H(0p)do =N/ G(q0)k(Op)dd =G (qp) - Ugp)
which are of the same form as (5); but G(gp), as will be seen, is
the Green’s function for the modified problems, and A (¢p) bears
the same relation to it that H(¢p) bears to G(gp).
3
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§82.—Boundary discontinuities.—The second of equations  (9)
shows that Q (¢p), regarded as a function of ¢, is the potential
of a simple stratum of density P{6p). From the boundary pro-
perties of such it follows that

f i difLQu ) - } Q) |=Etp)
\é‘[dii(e(t‘p) + (}iQ(ﬁp] =/ h(t0)P(6p)d0=P(tp)/X,

Adding and subtracting we find for the normal derivative of
Q(gp) on either side of the boundary

12 .
B (e Lae p=a+nee)

QU py=(1 - A P(tp)
dn
Regarded, however, as a function of p, Q (¢p) is a double stratum
potential of moment A,Q(g6). Henc:

J 3[QlgrT) ~ Qat)] = 2Qlq?)

Q) + Qlgt)] =N/ QUaO)h(68)d = Q1)
Adding and subtracting we lLave for the values of Q (¢p) on either
side of the boundary

(13)  f Qgt*) =(1 +A)Q(q?)

EQUgt7) = (1 = A)Q(gt)

Similavly P (sp) as a function of p is a double stratum of’
moment, AP(s6) ; and its values on either side of the boundary are
found 1n the she way to be

(14) { Plstt)y=(1+ \)P(s1)

P(st )= (1 =) P(st)

From the second of equations (10) G'(gp). regarded as a function
of ¢ is the sum of potentials g(¢p), —Q(gp), and a simple stratum
of density A/(6p). Frow the behaviour of these at the boundary,
and iu virtue of (12). it follows

‘, 0 ;
%[din(:(l Py - (#(,(H’p)]:)\[[(tp) —P(tp)
.1,[,"[‘ GUp)+ LG p) | =TI (Bp)0 + h(tp) - Pap)/As
“Ldn dn
=11(tp)

Adding and substracting we find

(15) {(gt(,(t,,,)z(l +X) U (tp) — P(tp)

l fz',];(.'(f tp)=(1-)(tp) + P(tp)
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Regarded. however, as a function of p, G(¢p) is a double stratum
potential of moment AG(g¢0), together with potentials g(gp) aud
—Q(gp). From the boundary properties of these we deduce

(16) }( “(gt*) (1 +>\) (gt) — MQ(gt)

@gt )=(1 - N)G(gt) +MQgt)

Finally /I(sp) mg,uded as a function of p is the sum of potentials
h(sp), —P(sp)/Ay, and a double stratum of moment A//(s6). From
which it follows, in virtue of (14) that

(17) H(st+) = (1 + My I(st)—P(st)

H(st=) = (1 =X} (st) + P(st)

N3.—Nolution regular at a singular parameter value.—We ave
now in a position to find solutions to the boundary problems (1),
with second members modified, having no singularities for the
characteristic number A, 1f we define the functions W (p) and
V(p) by

(18) (W (p)y=/1(0)H(6p)do

U (p)=/ 6(p) 1(6)d8
we find on substituting the values of A(6p) from (8) that W(p) is
the sum of potentials of double strata of moments f(¢), -/ f (6)P6)d 0,
and A/f(0)17(6t)d6 vespectively.

Hence we find that

L) - ()] - ) + ()

=1(¢) —/'£(0)P(0¢)d0 + \jT (0) H(0t) 6

ML E(h(S0)— /T (O)POSY(S)d6)+ X/ £ (O) H(6)($t)l6 )b
In virtue of (8) the second member disappears except for the first
two terms. So that 117(p) satisties the houndary condition.

(19a) L[W@+)— W )] - SN[ W(et)+ Wt )]|=£() -/ t(6)P(0t)db

In this all the functions are regular when A=A\,; so that
this equation admits the solution W(p) which is regular even
when A is put equal to the singular value A, It has been shown

elsewherel that for this value of the parameter the fust problem (1)
does not admit a solution by double stratum unless the condition

ST (6)P(6t)d6 =0
is satisfied, in which case the solution is obviously 1F(p).
Sinmilarly substituting the value of G(p6) given by (8) we find
that F(p) is the sum of potentials of shnple strata of densities f(z),
—/Peo)f(0)do and X/ II(26)f(6)d6. From the houndary pro-
perties of simple strata it follows that

;[zbr(w) T = e+ )

—£(t)—/ P(w)f( VA6 + N/ H(16) £ (6)26
— N/ (1) [£ () —/ P(0)E (8)0 + X 11($6) £(6)d6) s

1 Weatherburn. *‘ Boundary Problems, ete,” §6.

!



170 . K. Weatherburn

In virtue of (7) and (8) the second member reduces to the first two
terms ; so that I'(p) satisfies the boundary problem.
- o] e

= f£(¢) - SP@O)(0)d6
All the functions involved are regular for the singular value A=A\,
so that V(p) is the solution of the problem (19b) regular even when
A is equal to this singular value. The problem (1b) does not
admit a solution by simple stratum only. when A=A\;, unless the
condition ‘

S P(6)t(8)d6 =0

is satisfied, in which case the required solution is obviously V(p).
The problems (19), derived from (1) by altering the second member,
we shall speak of as the modified problem for the singular value A
The functions Z(¢p) and G(pt) bear the same relation to the solution
of the modified problems that H(fp) and G(p?) bear to the original
problems (1).

tain. by the method of successive approximations, expansions for
the various functions in ascending powers of A. These are cer-
tainly true for | A | < 1, and in particular cases even for [Al=1.
For the present we shall assume that the absolute value of A is less
than unity.

Thus from (8) in virute of (7) we find

20y (Hs)= [/.(m) ~Lpgs) ]+)\[/Ll(ts 2P(m)]
+A‘~’[la_,(ts)—)\03 ts)] T

G(ps)=[g(rs) - Qrs)]+ A[r/l(z’S)— )}n Q(ps?]
+¥odps) - Q0]+ -

where the suffixes denote functions formed by successive operations
as

hy(ts)= Jh(t0)h(0s)db,

hy(ts)=/"h\(10)h(63)d0, etc.
and

:(ps) =/ g(p8)h(Bs)clb,

9:p3)=/ (O (bs)lB, ete.
If we extend the notation and replace ¢ by any point p we may
write

hy(tp)=/ h{(t0)h(6p)d6,

haltp)y=/"hn (1) (Bp)db, ete.
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and the first equation (20) hecomes
(20" J _ A 1
] Hip)=[ Itp) AoP(tp)] + A It }\;HP(tp)]+

lutroducing these values in (18) we have. for the solutions of the
boundary problems (19)

(21) j W(p)=/16){ [ 16) —)%P(@p)] s /\lozP(pG)] + .. e,

{70 =/ lat00)— Qo)) + M) = | QU] + .-} (6.

* We may further obtain expansions for the moment v(Z), and the
density p(t) of the strata satisfying (19); for these are solutions of
the integral equations
{ v(t) = M v(0)h(68)d8= (1) — / £(6)P(60)dO=E(2), say
u(t) ~ N/ tE)u(O)L6=£(1) ~ ) B(16) E(O)dO=F(1), say,
and are therefore given by the expansions
(22 ) r()=E@)+AE() + NE () + . . . .
Ep()=F@O)+AE O +MF 0O+ . . .
where the successive functions are given by
Ey(t)=/ E(6)h(6t)d0
Ey()=/ E\(6)h(6t)db, &e.
and
B\ (t)=/h(t8)¥(6)do
B,/(t)=/"h(t0)F, ()16, &e.

If we evaluate these functions we find

Bo(t) =/ £ (6)h _1(01)16 — )\lm/'f (6)P(6r)A0
0

B, (t) =) heu— 1(26)£(6)d6 )\l"_/'P(xa) £(6)d6
0

If now we form double and simple strata with moment and density
given by (22) we find exactly the series (21) over again.
85.—Formule of Reciprocity.—The Green’s function G(pg)
admits certain theorems of reciprocity. The argument used to
establish these for the ordinary potentiall is equally valid for the
generalised, the symbols having their altered significance. These
relations may be stated
i. If the points p and ¢ are both in the same region or both on
the boundary

(23) G(2g)=0C(yp)

1. Plemelj. Loc. cit., S, 395-305,

-
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ii. If p is a point of the inner region, ¢ of the outer, and ¢ a
point ou the boundary.

(24) (1 +0)G(pg)=(1=N)G(gp)
G(ep) =1 4+N)G(pt)
G(eg) =(1=1)G(72)
From (23) and (6) we deduce immediately that if p and ¢ ave
both in the samne region, or both on the boundary,
(25) | Qlpg)=Qgp)
[ G(pg)=6(g2)
If, however, p and ¢ are in the inner and outer regions respectively,
we find on substituting from (6) in the first of (24), multiplying by
Ao—A and putting A=A\,
(26) | (1+2)QUpg)=(1=2)Qgp) N
LA+ GG =0 - NG+ 2N Q)
14A,
Similarly from the second and third of (24) we find
(27) | QUp)=(1+X)Qpe)
L Q(tg)=(1 - A)QAgt)
and thence
(28) 3 G =(1 +0)E () —\Q)
U Glig)=(1—N)Glgt) +XQ(g7)

11.—The ordinary potential.

§6.—Integral Relations.—The preceding properties are common
to ordinary and generalised potentials. We know, however. that
while the values A=41, which correspond to the problems for the
inner and outer regions separately, may both be characteristic
numbers for the ordinary potential, they are not! singular for the
generalised. The properties arising from the existence of these
poles are then peculiar to the ovdinary potential.  Other special
velations arise from the fact that for this potcutml the function
h(tp) satisties the integral relation?

(29) Jhitp)dt=2, 1, or O
according as p is within the closed surface, on the boundary or
outside, and the integration is extended over the boundary. We
shall find further on a corresponding formula for the generalised
potential from whicli this may be deduced by putting £=0.

Let us suppose that the boundary consists of m independent
surfaces each possessing at every point a definite tangent plane
a,nd two definite principal ludn of curvature. The value \=1

1. Weatherburn. Loc. cit., § 3.
2. Plemelj. Loe. eit., S. 341-4  Another proof is by Green's Theorem as in § 9 of this paper.

L 4
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is always singular.  We shall assume that the surfaces are all
exterior to one another, so that A= —1 is not a characteristic
number. The functions P(#s) and Q(zs) assume simple values at the
pole A;=1. For the functtons y,(s), Yu(s), . . . , Ym(s) are such that
¥,(s) is equal' to +1 over the »th surface and zero over all the
other surfaces; while ¢,(¢) is a distribution of electricity over
the surfaces giving constant values over each of the surfaces
and throughout each of the m inner regions. This distribution
¢,(+) has a total charge +1 over the rth surface, and zero over
each of the others. It therefore represents the electric distribution
over the m surfaces regarded as conductors, due to unit charge on
the rth surface. Hence, if we use an index to denote the particular
value of the pole A,
PHI(ts)=(t) r=1,2,....m

according as s is on the Ist, 2nd, mth surface. Further, the func-
tion Y,(p), being equal to the potential of a double stratum of unit
montent over the rth surface, is given by

(30) U p) =/ ltp)dt=2, 1, or O
according as p is within the rth surface. on its bhoundary, or out-
side that surface. The potential @,(g) due to the distribution
¢:(¢) 1s the conductor poteutial referred to. We shall denote it by
I'¥(q). So that

(31) [ PHItp)=2¢.(t), ¢u(t), or O
L Q*)gp)=214g), Ti(g), or 0
according as p is within the #th surface, on its houndary, or in the
outer region. This of eourse is a particular case of (13) and (14).
We may prove several interesting properties of the functions in-
volved in (3), (7) and (3), making use of the relation (29). 1If in
the first of (7) we replace p by a boundary point s, multiply by d¢
and integrate over the houndary we find
SP(ts)dt=AX, /' P(6s)db
Hence
(32) J Pts)de=0 A=l
By the same process we deduce from (5) that*
(33) (1 =)/ H(ts)dt=1
Substituting from (6) and putting A, =1 we have
(33" (L—=X)/ H+Yts)dt + P+ (ts)de=1

1. Plemelj. Loc. cit., Kap. 16.
+ In (32) s may be replaced by a point p. The same may be done in (33) and (34') provided the
second nrember be changed to 2 for p in the inner region, and to 0 for p in the outer region. Cf. §10.
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This is an identity in A, and P+1(#5) does not contain A. We may
therefore put A=1 giving
SPH(ts)dt=1 :

which may also be deduced from (31) in virtue of the properties of
the distribution ¢,(¢).  This last relation combined with (33")
shows that

(34) SH*(ts)dt=0
while from (32) aund (33) it follows that

(34") (1 —=N\)/H (ts)dt=1 A L
This may also be proved from the first of (8), multiplying by dt
and integrating over the boundary.

NT.—Fzpansions.—The second member of the equation (19a)
assumes, when A, =1, the form

E()=1(t) - /' (6)p-(0)d0=1(t) - C,
r=1,2....,m

according as ¢ is on the Ist, 2nd . . . mth surface.

The series (22a) now becomes, by (29)

(35) v(O)=[£(1)—C, ]+ AL £,()—C, ]+ N[ £0) - C, ] + . . ..
and since »(f) now possesses no pole at A= +1, while A= —1 is not
a singular value. this series is convergent for |[A[=1. The terms
therefore decrease indefinitely, and we have for the constant Cr

the valuel
C,=1Lt f,(¢)

n=oc

=Lt f1(6)hn(6)db
n=occ

where # is on the »th surface. The constant C, assumes m different
constant values, one on each of the surfaces.
In (35) we may put A=+1 and thus obtain the moments of the
strata, which satisfv respectively the boundary problems.

Wt )=—[f(@)—C,]

Wet)y=£(@)—C,

The singular value A =1 also corresponds to the second problem
for the inner region. The second nember of (19b) for this pole
takes the form

F(t)=f(¢)—/ P(10)£(0)df
= f(r)—p(1)/T(O)dO=1(2)
provided the usual condition for the inner region, viz.,
JE(0)d6=0
be satisfied. The function p(f) represented by (22b) now becomes
(36) p(t) = () + A/ (D) £ N6 ) + . ...

1 Cf. Plemelj. Potentialtheoretische Untersuchungen, S. 60.
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It has no pole at A= +1, while A= —1 is not a singular value.
The series is therefore convergent for {A|=1. In (36) we may put
A==+1 and thus obtain the densities of the simple strata which
satisfy respectively the boundary problems

Nry= -1
dn

Ni-y=1(0).

dn
The series for the solutions (21) may be obtained from that equa-
tion by substituting the values of P('@p) and Q(pd). Further, if
A,=1, the functions #/+1(ts) and G+Yps) given by (20) have no
pole at A=1, while A=—1 is not a singular value. The series are
therefore convergent for |A|=1, so that the terms decrease indefi-
nitely. It follows that

PHlts)=cp,(£) =Lt hy(ts)

n=m

giving the electric distributionl. ¢.(¢) in terms of the iterated

tunctions h,(¢s): the limit assuming one of m difierent values,

according to the surface upon which s lies:  Similarly from the

convergence of the second series (20) for |X| =1, it follows that
Qt(ts)=Lt g,(ts)

n=mn

i.e.
(37) T(t)y=Lt ya(ts)
n=ow

giving the conductor potential 1':(f) as the limit of the sequence
g:1(t8), ga(ts). . . . which assumes m different values according to
the surface on which s lies.

§8.—Nolution of the second boundary problem for both inner
and outer regions in terms of « single function.—In the second
boundary problem the values A= +1 correspond to the inner and
outer regious respectively. The former of these values is the only
pole involved. The houndary problem (19b) becomes, for Ay=1,
and A==1 equivalent to the separate problems represented by

G8) (V= s for A=+1
an
av,, . .
e y=t) for A=—1

where in the former the boundary function f(#) is subject to the
usual integral condition. The solutions to the problems given by
(18) may be written
(39) V(p):f@i%(pe M (6)do
and

V(p)=/6*1(p6) £(6)db

1 Cf. Potentialtheoretische U 8. 69,
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respectively, where the index represents the pole A= +1 and the
suflix the particular value of A.  As now the pole Xj= +1 is the
only one to be considered we may drop the index in what follows.
These two solutions are expressed in terms of different functions
G (ps) and G_y(ps). It is our object to express both of these in
terms of a single function. By means of the second equation (8)
We may write
(10) | Gor(p®)— /G 1(pB)h(Bs)Ab=g(ps)—D(p)

Lo ](]Js)—*—./'(r',1(1;9)11(38)(16:‘(/(7)5:)—F(p)
If we put

[ 2R(ps)=C s 1(ps)+ 1 1(ps)

V2R, (ps)= G 4 1(ps) =6 1(ps)
we obtain from the preceding by adding and subtracting

(1) § ROu)—S R(pOY(Bs)t=g(ps)— T(p)

U Ry(ps)—/ R(pb)h(6s)d6 =0
This last equation expresses R(ps) in terms of £(ps); hence we
may determine both G 4i(ps) and Gy (ps) in terms of the single
function K(ps). From (41) we find that £(ps) satisfies the integral
equation

Rips) ~/ R(po)(B)d6=y(ps) = E(p)-

As in §4, by the method of successive approximations, this integral
equation gives us an expansion for R(ps) and hence for B (ps). We
find

{ B(ps)=\9(p>) =T @) +[1:0p5) = TN + [9:(p) = T)] + - -

Bi(ps)=[g:(p5) = ()] +[9:(p9) = LD)] + - - -

which are hoth convergent, being identical with those obtained by
adding and subtracting the absolutely convergent series for G 41(ps)
and G- (ps).

The solutions of the second boundary problem for both the inner
and the outer regions could also he expressed in terms of the
function A(fs) introduced by Plemelj.l  For from (&) we find

GHY(ps) = N y(po) U+ (0s)db=g(ps) —T(p)
In this we may put A=41 in turn, and thus obtain G'yi(ps)
and G_i(ps) in terms of I y(¢fs) and [/_y(ts) respectively, and
hence in terms of K(fs). Introducing the values of the functions
we find

G (ps)=y(ps) - L(p)+./y(pb){ K(0s)+ /' h(6o) K (os)da | d6

=g(ps)=T(p) +/9(pO) K(65)d6 + fi,(pb) K(6s)d6

Similarly

Goa(ps)=y(ps) = T(p) =/ e(pO) K (05)d6 +/u(p6) K (8s)d 6
So that the solutions for both 1egions may be expressed in terms
of K(ts).

1. Potent. Unter. 8. 79.
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H1.—The generalised potential.

§9.—Fundamental formula.-——The simple forms taken by the in-
tegrals of $§6 depend upon the formaula (29), which is true only for
the ordinary potential. | now propose to find the value of the
integral

Sh(tp)di
when the potential is generalised. corresponding to the equation
(2). In Green’s formula
D) T

(42) j(%g ((Z[V: + ... .)d(/: -/ U‘%ds - S U.vV.dy
put U=1, and V=g¢(¢p). ¢ being a variable point and p a fixed
point. If in (42) the integrationu is extended over a closed surface
and p is outside the surface we find, since g(gp) satisfies (2)

(43) [h(tp)dt= — Ey(gp)dg
where g is the element of volume at ¢. The integration in the
second member being extended throughout the volume enclosed by
the surface, the integral represents the potential at p due to a
uniform distribution of mass of unit density throughout that
volume. We shall denote this potential by X(p).

If, however, p is inside the closed surface we must surround p by
a small sphere Q of radius », the surface integration of (42) now
including the surface of this sphere, and the volume integration
extending only throughout the volume between the sphere and the
original surface. At the small sphere the positive direction of the
normal is that of » increasing, so that (42) becomes

f/L(t;})dt+k‘f/'(gp)d1/=—/%g(sp)ds:1/271—/1;”‘“(1;-{"%\)({3-
Q (9)
and when the radius of the sphere becomes vanishingly small the
second member is equal to 2. Hence when p is within the closed
surface

(44) Sh(tp)dt=2—EYy(gp)dg=2—EX(p)
the volume integral of the second member being convergentl since:
the subject of integration becomes infinite at p=¢ ouly as 1/

To find the value of fA(ts)dt where s is a point on the boundary
we observe that fh(fp)d# is a double stratum potential of unit
moment over the boundary. Hence its value at a poiut on the
surface is the mean of its values at points infinitesimally close to
this, one just inside aud the other just outside. So that

(45)  Ih(ts)de=1—R7g(gs)dg
=1—/X(s)

1 Cf. Leathem. “ Volume and surface integrals used in Physies,” p. 14 (Cambridge Tract, 1915).
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§10.—Further relations.—By means of the preceding results we
may obtain relations corresponding to those of §6 for the ordinary
potential. From the first equation (7) we find on multiplying by
dt and integrating over the boundary,

S P(tp)di=X, /|1 —k*X(6)]P(0p)d8
that is,

(16) (1= )/ P(p)de= — BN,/ X(6)P(6p)d6
which reduces to (32) when 4% is put equal to zevo. Similarly from
the first of (R) we find on integration with respect to ¢

AL = RX(0))H(Bp)db=/ H(tp)dt— e+ KX (p)

L
i
or
(47) (L= NI (tp)dt = c— EX () — B X (8) L (6p)d6
B e
oy 2 X @ RO

where ¢ has the value 2, 1, or 0, according as p is within the inner
region, on the boundary, or in the outer region. This relation
reduces to (33) when £ is zero and p on the boundary.

These might have been derived from (5), the first of which be-
cones on 1ntegration

(48) (1—N)./ H(tp)edt =c — 12X (p)— N/ X (0) H(0p)d

Substituting from (6), multiplying by (A,—A) and proceeding to
the limit A=A, we arrive at (46). Then substituting from this
in (48) we find (47).

The preceding investigation deals with the singular parameter
values of the first two boundary problems only. In another paper’
the author considers the third boundary problem for the equation
(2), requiring the determination of a solution satisfving the rela-
tion

?;(H):)\ﬁ(l) V(t+)—BOU(1)

The singular parameter values for this problem ave there discussed.

1 Weatherburn. *‘The mixed boundary problem for the gencralised potential corresponding
to theequation ¢2 w- k2u=0." Quarterly Journal, vol. 46, pp. 83-04,



